Enhanced Gradient for Learning Boltzmann Machines
نویسندگان
چکیده
Boltzmann machines are often used as building blocks in greedy learning of deep networks. However, training even a simplified model, known as restricted Boltzmann machine, can be extremely laborious: Traditional learning algorithms often converge only with the right choice of the learning rate scheduling and the scale of the initial weights. They are also sensitive to specific data representation: An equivalent Boltzmann machine can be obtained by flipping some bits and changing the weights and biases accordingly, but traditional learning rules are not invariant to such transformations. Without careful tuning of these training settings, traditional algorithms can easily get stuck at plateaus or even diverge.
منابع مشابه
How to Center Binary Restricted Boltzmann Machines
It has recently been shown that subtracting the mean from the visible as well as the hidden variables of deep Boltzmann machines leads to better conditioned optimization problems and improves some aspects of model performance. In this work we analyze binary restricted Boltzmann machines, where centering is done by subtracting offset values from visible and hidden variables. We show analytically...
متن کاملEnhanced Gradient for Training Restricted Boltzmann Machines
Restricted Boltzmann machines (RBMs) are often used as building blocks in greedy learning of deep networks. However, training this simple model can be laborious. Traditional learning algorithms often converge only with the right choice of metaparameters that specify, for example, learning rate scheduling and the scale of the initial weights. They are also sensitive to specific data representati...
متن کاملEnhanced Gradient and Adaptive Learning Rate for Training Restricted Boltzmann Machines
Boltzmann machines are often used as building blocks in greedy learning of deep networks. However, training even a simplified model, known as restricted Boltzmann machine (RBM), can be extremely laborious: Traditional learning algorithms often converge only with the right choice of the learning rate scheduling and the scale of the initial weights. They are also sensitive to specific data repres...
متن کاملAdvances in Deep Learning
Deep neural networks have become increasingly more popular under the name of deep learning recently due to their success in challenging machine learning tasks. Although the popularity is mainly due to the recent successes, the history of neural networks goes as far back as 1958 when Rosenblatt presented a perceptron learning algorithm. Since then, various kinds of artificial neural networks hav...
متن کاملHow to Center Deep Boltzmann Machines
This work analyzes centered Restricted Boltzmann Machines (RBMs) and centered Deep Boltzmann Machines (DBMs), where centering is done by subtracting offset values from visible and hidden variables. We show analytically that (i) centered and normal Boltzmann Machines (BMs) and thus RBMs and DBMs are different parameterizations of the same model class, such that any normal BM/RBM/DBM can be trans...
متن کامل